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INTRODUCTION 

Social and political polarization in Russia during the last years is not weakening. The most 

part of population is involved in the active struggle for its political position. Mass media and mutu-

al contacting in the population are contributing to these positions, often – against the real and pro-

found interests of the people and the society as an entity. As a result because of the social and psy-

chological law of imitation (similarity), the behavior of big masses may become stationary and irra-

tional (Rashevsky, 1966). 

The importance of scientific analysis of these processes and the development of the prognos-

tic methods are beyond doubt. However, this analysis is set against the immense complexity of so-

cium as an entity, which can be observed in the numerous characteristics and the specific connec-

tions in between (Helbing, 1994; Cioffi-Revilla, 2005, 2010; Opp, 2011). Often this complexity is 

aggravated by the well-founded qualitative theory having empirical and accepted outcomes. This 

happens because different branches of science, with their own methods and languages describe the 

social objects. That is why the design and analysis with mathematical and computer models, having 

the universal language, is unavoidable step for any social science (Makarov, 2013).     
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In this article, we analyze and use the mathematical models of inter-relations between the so-

cial groups of a single society, though varied in ideology or system of values for simulation compu-

tations. There are many research works on the movements and political confrontation topics. For 

example, there are articles on the political inequality between the states and the parties’ political 

confrontation in the Senate etc. (Makarov, 2013; Baldassarri, Bearman, 2007).      

Different methods are used for the model analysis. Agent-oriented models, permitting to ana-

lyze the interactions of a large number of the participants are in wide exploitation (Davern, 1997; 

Cioffi-Revilla, 2002; Wasserman, Faust, 1994; Makarov, Bakhtizin, 2013). 

The Markov models are widely used in demography, the research of social mobility etc. 

(Staroverov,  1997; Semenchin, Babchenko, 2006). An alternative approach to the agent-oriented 

modeling is the design and interactions of the social groups, as well as modeling of these processes. 

Exactly here the Markov models and their modifications may be intensively used. The differential 

equations’ apparatus open the new options for analyzing the dynamics of socio-economic processes 

(Moody, Douglas, 2003; Gavrilets, Anderson, Turchin, 2010; Weidlich,  2002). 

The phenomenon of social networks and their possible influence on the social and political 

life arouse special interest and storm promises (Gubanov, Novikov, Chkhartishvilli, 2010; Baldas-

sarri, Bearman, 2007). 

Computer models and computation experiments are the only outcome, when it is impossible 

to get the adequate information on socium or when sociological experiments are too expensive. 

Computer modeling in these cases are considered the experiments, and the results of such quasi-

experiments often bring useful and high-quality outcomes.   

In the present article, we use differential equations, describing a behavior of a single man and 

Markov chains, describing the inter-group transactions to analyze inter-group interactions. Our 

main goal of computer modeling is the analysis of a process per se in time, as well as its final sta-

tus, to which a system is driving. 

 

SOCIAL SUBJECT BEHAVOIR MODEL 

We estimate (Gavrilets, 1974) that three groups of factors determine behavior of any individ-

ual in a society, namely: 

1) life conditions of an individual; 

2) a system of preferences and goals; 

3) individual information about the environment.  

Some parameters of the environment and individual contacts are reflected in the following 

situations for analysis, a system of preferences is reflected in the guidelines, that is the political po-

sition of an individual, measured by real number. The information is reflected in the current ideas 
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and guidelines about the other groups’ aims and behavior. To change one’s social status (choice of 

a group) is considered the aim of a particular behavior.  

We shall show the use and options of the models, since our main model is based on the known 

models with Markov chains and differential equations. 

Example 1. Use of differential equation. A classical model of simulation behavior was pro-

posed by an outstanding Russian-American scientist N. Rashevsky1. He was one of the first found-

ers of mathematical biology. We analyze N individuals every one of which may demonstrate one of 

the two types of behavior. The examples of such dichotomy may be political (“pro” or “contra”), 

religious (believers or nonbelievers), moral (chastity of “free love”) etc. Choice of the one is deter-

mined by the purposes (settings) of an individual, measured by a real number ( x−∞ < < ∞ ). The 

Gauss density determines the basic distribution за all the individuals by their purpose (before he 

gets information about the others’ behavior) 
2

2
1( ) exp

22
xN x  −

=  σσ π  
, 

where σ is a characteristic of scale of measurement of the purposes. Value х for every participant 

does not change in time. It is accepted that a probability of choosing the first type of behavior with 

х is given by function p1(x), which is equal to probability integral with dispersion k2 and zero math-

ematical expectation 

 
2

2
1( ,0, ) exp .

22

x ux k du
kk −∞

 −
Φ =  π  

∫  (1) 

Evidently, a probability of choosing the second type of behavior is p2(x) = 1 – p1(x).  

At any moment of time t the quantities N1 and N2 (N1 + N2 = N), realizing the first or the 

second behavior, are known to all the participants; son it turned to be possible to learn how much of 

those who had chosen the first type of behavior is bigger than those who had chose the second. This 

difference makes every one to deviate from his initial setting on value ψ. So, a choice of behavior 1 

can be found from the general aim y = x + ψ, and 

 1( ) ( ) 1( )N x p x dxψ = Φ +ψ∫ . (2) 

A value of “imitation behavior” ψ is the same (as compared to the initial aim x which remains un-

changed with everybody) with everybody and is changing to the rule 

 ( 1 2)d A N N a
dt
ψ
= − − ψ , (3) 

where A is a coefficient of imitation (conformism), a is a coefficient (speed) of forgetting. 

                                                           
1 N. Rashevsky was born in 1899 in Chernigov, studied in Kiev. In 1920 he emigrated form the Crimea with the White 
Army (Guard). Lived in Chicago after he competed lecturing in Turkey and Prague. Was a lectures in Chicago Univer-
sity, had some problems in McCarthy times. 
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Substituting N1(ψ) and N2(ψ) into equation (3) and analyzing its decision we can find, how 

the stationary conditions depend on the model parameters, and understand whether they would be 

stable or not. It is determined by the relation between the parameters A, a, σ, k, N. 

The most important outcome from this model is an option to find a size of a “crowd” 

2* 22 / 2 ( )N kN A= π σ + , while exceeding which a “society” behaves irrational and a possibility 

to analyze a point of bifurcation when there can be an abrupt change of orientation of the majority 

of population.  

Example 1. Use of Markov chain. Let us take the most simple model (Gavrilets, Ofman, 

2012) of creating some discrete ordered setting (k = 1, …, n), for example, some “moral index” as a 

result of immediate contact of the individuals with the “outside environment. It is considered that a 

change of this index depends on immediate contact of individuals with “outside environment” that 

can be conditional “good” or conditional “bad”. 

Otherwise, as in the past, we have an individuals’ distribution over the ordered values (1, ..., 

n) of the moral characteristics of the individuals: 1( ,..., )nX x x= , 1 ... 1nx x+ + = . Here xk is a share 

of individuals in the given aggregate, whose moral index is k.   

At every moment of time  0,  1,  t = …an individual with probability P > 0 meets bad envi-

ronment, or with probability P > 0 — with good environment. At the same time P + Q < 1. Bad 

environment diminishes the moral index by one; it means that from condition k he moves to the 

condition k – 1. Good environment increases his moral index by one. The extreme (marginal) in-

dexes’ values do not change meeting (his) environment. 

So, we have Markov chain with matrix of transitive probabilities M: 

1 0 ... 0 0
1 ... 0 0

0 1 ... 0 0
.

... ... ... ... ... ...

... ... ... ... ... ....
0 0 0 ... 1

Q Q
P P Q Q

P P Q

P P

− 
 − − 
 − −
 
 





=




−

M  

It is easy to confirm the truth of the following confirmation. 

Statement. With any starting individuals’ distribution over the moral index X = (x1, …, xn) 

the marginal distribution * * *
1( ,..., )nX x x=  forms a geometrical progression with  value /q Q P= : 

 * * *
1 1 1

1, .
1 ...k k Nx qx x

q q+ −= =
+ + +

  (4) 

Indeed, since matrix M is non-reducible, there is the single marginal condition X*. Deciding a 

system N+1 of equations: 
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 * *
1 ... 1,nx x+ + =     (5) 

 * *X X= M ,    (6) 

we get the correlations (4). 

Let us note that progression X* may be either increasing (with Q > P), or decreasing (with P > 

Q). The equality P = Q stationary distribution will be uniform. This condition looks quite natural, 

because the better is one’s life, the better people are around. The adverse statement may also be cor-

rect.  

These examples illustrate the possible methods of mathematical interpretation of the dynamics 

in the social groups numbers due to the immediate contacts, as well as changes in the aim, that also 

changes when we observe the others’ behavior (information influence). 

 

THE CORRELATIONS IN THE BASIC MODEL 

Before we turn to the description of correlations of the basic model, it is necessary to note that 

the author understands how to use a scheme of Markov chain further — as an approach to adequate 

mathematical description of social reality. There is no individual participants’ behavior, they have 

no memory, there are no “absorbing” conditions, from which an individual cannot transit etc. These 

moments can be considered without formal difficulties, but the model dimension and the number of 

parameters will grow considerably. 

Creation of social & political aim. Let us turn to the basic model.  Let the society consist of 

N members, who form five social groups. Let us also take xx as a number of “active green” group; 

zz — as “active blue”, x — as a group of supporting the “green”, z — as a group of supporting the 

“blue”, y — a number of “passive” part of society. So, at every moment we have balance in y + x + 

z + xx + zz = N.  

Active groups of  “green” and “blue” are recruited from the corresponding supporting groups 

in correlations with the aims: e1 — to activate the supporting “green”, e2 — to activate the support-

ing “blue”. Aims е1 and е2 give the functions of probabilities q1(e1) and q2(e2) to transit to the ac-

tivities (and to the corresponding groups). So, at any moment t a number of activists increase by 

q1(e1)x for the “greens” and q2(e2)z for the “blues”. 

As for the vales of aims е1 and е2, they change concerning the number of supporting them, as 

well as of the mere aims е1 and е2 per se. The computation accounted the difference in aims (opin-

ions, views) of every member from some analogous of medium aim of all the members in both 

groups. This difference depending on the sign (positive or negative) had led to increasing or de-

creasing the aim of every member.   

The external standard influences the aim of a member form a group of supporters, where E1 

and E2 are the fixed values of aim, imposed on the groups’ members by the media (TV, radio, press 
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etc.). Change in the tendency to be active in every supporting group depends on their relations in-

side the group and influence from the outside according to the formulas: 

 
21,5 1 ( 2 ) 1 11 1 1 1( 1 1 )exp ,

12
t t t t t

t t
t t

x e z e E ee h A e B E e
x z

   + − − ∆ = − + − −    +       
  (7а) 

 
21 1,7 2 2 22 2 2 2( 2 2 )exp .

13
t t t t t

t t
t t

x e z e E ee h A e B E e
x z

   − + − ∆ = − + − −    +       
  (7б) 

We suppose, that the change in the aims of the tendencies to be active (e1, e2) in supporting 

groups is determined by a sum of two social & and psychological discomforts: the difference of the 

current aim from the analogous of weight average in both groups and its difference from the im-

posed from the outside standard (E1, E2). 

The first augend (summand) is a linear function related to e1, e2, the second being non-linear 

(Figure 1). This non-linearity means that augmenting difference of the current aim e from the im-

posed standard E first grows, but later falls to the zero. 

 

Figure 1 

 

Some coefficients were introduced in computations for the formulas (7a)—(7b), though they 

have no significant meaning, but ease the visual interpretation of the computed dynamic trajecto-

ries.  

Change in the aim ψ of the passive part of a society is described in the same way as Rashev-

sky equation (2), the outside influence H added. This equation defines the growth in the tendency of 

the passive part (in continuous ψ) at the expenses of the first type: 

  
( ) .d A x xx z zz a H

dt
ψ
= + − − − ψ +

 (7) 
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The solution of equation (7) was found in a series of iterations with several steps h. We have three 

differential equations, describing the patterns of creating the social position (e1, e2, ψ). We can see, 

that change in the aims is determined not only by its current values, but by the numbers of the ac-

tive social groups. 

Creating the number of group members. Social & ideological structure of society is vector 

of ( , , , , )t t t t t tW x z xx zz y= , while its dynamics is described by Markov chain 1t t tW W P+ =  (with prob-

abilities of intra-group transitions of  p(x/y) type), where 

 

, ,

, ,

,

,

, , ,

0 0 1
0 0 2

0 0 0 ,
0 0 0

0 0

x x x xx

z z z zz

xx xxt

zz zz

y x y z y y

p p
p p

pP
p

p p p

γ 
 γ 
 ρ=
 µ 
 
 

   (8) 

 , , , , 0,y xx y zz x z z xp p p p= = = =   (8а) 

 , , , , 0,xx y zz y x zz z xxp p p p= = = =   (8б) 

 , , , , 0.xx zz xx z zz x zz xxp p p p= = = =  (8в) 

Zero probabilities (8a)—(8b) show that transition is impossible, for example, — passive to the 

group of very active, though such a transition is possible in two steps. We suppose, that some tran-

sitions have constant probabilities, that means they do not depend on time and the values of the oth-

er variables. These are the probabilities of leaving the group of active (into the groups of support-

ing) and from the groups of supporting (to the passive part of socium): 

,xx xp = ρ , ,zz zp = µ , , 1x yp = γ , , 2z yp = γ . 

Probabilities ,x xp , ,z zp , ,xx xxp , ,zz zzp , ,y yp  are determined as complements to one of the sum of all 

the rest probabilities of group transitions. 

Creating the groups of maximalists takes place regularly depending on the current active 

mood of e1 or e2: in the groups of support 

 , 1Ф( 1, 0,1)x xxp e= φ , , 2 Ф( 2, 0,1)z zzp e= φ , (9) 

where 1φ  and 2φ are some coefficients, while function Ф is probability integral of type (1). As a re-

sult the active groups are formed according to the rule: 

[ ]1cnorm( 1 /15,5) (1 ) cnorm( 2 /15) (1 ) .t t t t t te x xx e z zz zϕ + −ρ = ω + −µ =  

Some part of the active (ρ — for the ones and μ — for the others) continuously transit into the 

groups of support. Fragment γ1, γ2 in the groups of support return into the passive part of society. 

The passive part forms groups of support for the “blue” and the “green” according to Rishevsky 

model ( 2 2,kσ  are the values of Gaussian dispersion, and ψ  is the growth in favor of the first type 
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of behavior). Positive parameters ξ1, ξ2 < 1 play the role of specifying coefficients for transition 

probabilities from the passive part of society into the groups of support: 

2

, 12 22 2

1 exp
2( )2 ( )

y x
xp dx

kk

ψ

−∞

  −
= ξ  σ +π σ +    

∫ ,  

2

, 22 22 2

1 exp
2( )2 ( )

y z
xp dx

kk

ψ

−∞

  −
= ξ  σ +π σ +    

∫ . 

Given the values of parameters ξ1, ξ2 < 1 and formed the differential equations of the aim dy-

namics (ψt, e1t, e2t) and Markov relations for ( , , , , )t t t t ty x z xx zz , we have the united system of equa-

tions (7)—(8), specifying the dynamics of the population aims and the number of social groups; 

that means we can trace the trajectory of political contradictions in the society. Take a notice of cor-

relation between the given parameters and the current values of all the variables, beginning from 

the present moment t, the solutions of differential equations and Markov chain (of every chain sepa-

rately) may tend to their extreme (marginal) states. 

These marginal (extreme) states mat be coherent and non-coherent. Therefore, if our Markov 

chain will always have the single stationary solution, then the differential equations would nave 

more that one stationary state, still more — some of them may be unstable (non-stationary). Unfor-

tunately, we cannot propose a theoretical prove to the extreme (marginal) coherent state. But com-

puter computations show stable algorithm convergence.   

Computing the size of a step for changing the aims and the speed of changing the number of 

group members may be found in different procedures, because they specify model representations 

of the relative correlations between the velocities of reactions to the environment change. We may 

have the specific value of this step for every differential equation of the aims (notions). 

Our model unites into on the dynamic system different mathematical objects: differential 

equations and Markov chains. It is evident, that vector of the states of the Markov sequence comes 

from the transition probabilities at one, single step. At the same time, we can randomly fix the size 

of this step through the consequent iterations inside the differential scheme (especially, if we would 

try to solve the differential equation), lest we define trajectory precisely enough. That is why the 

time period  to which the transition probabilities relate should be related to the ticks of iteration re-

flecting the time in which the modeling change of the aims takes place, that depend on the Markov 

variables. 

We may coordinate the time ticks, relating the transitive probabilities no to the fixed time 

gaps, but to the same ticks — as in the differential scheme. We may put the analogue of Markov 

chain Хt+1 = Хt P as Хt+1 = Хt + h(Хt P – Хt). At h = 1 we get the regular Markov chain. In our case 

it bring us to the same stationary state, but we shall be more careful in the interpretation of transi-
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tion from one group into the other. Thus we additionally computed all the trajectories for this modi-

fication when the value of parameter h would be not 1, but 0,2. In the Attachment, we show the tra-

jectories of this analogous of the basic model (see Figure A2). 

 

MODEL COMPUTATIONS 

We used the basic values of parameters for the primary computation. In Attachment (Figures 

A2 and A3) we showed some trajectories of the parameters, the values of basic variables and their 

extreme (marginal) states from Table 1. The Figure A2 shows the trajectories of all the group pow-

ers excluding the group supporting the “blues” (z). The Figure A3 shows the dynamics of all the 

three aims. We may see that in 200 — 300 ticks, a system comes into the balanced state, and the 

behavior trajectories may significantly differ. During the first ticks, many trajectories may be mo-

notonous, but further they tend to the stationary state. However, the final balance does not depend 

on the random values of the initial state fro all the variants of our computations. 

 

Figure 2        Figure 3 

 

Analysis of structural model stability. The values if balanced (marginal) states did not de-

pend on the random variations of the initial state, which are characteristics for the normal Markov 

chains and stable differential equations. However, this is not enough, when the values of model pa-

rameters are not defined precisely. Here comes a legitimate question: what deviations may be asso-

ciated with the stationary values of the basic variables.  

We have tested the stationary sensitivity of a system with the varying parameters of the basic 

model.  We nominated random parameters in the neighborhood of the basic values for some varia-

bles using homogeneous and Gaussian distributions. Increasing the volumes of such random obser-

vations, we saw the gradual stabilization of the medium values (with increasing sample) of station-

ary (marginal, extreme) states.  We observed the same stabilization of the related dispersions. 
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 First we studied in turns the influence of the parameters A (simulation coefficient for the aim 

of the passive part of population), H (velocity regulation parameter of simulation aim change) and k 

(variety characteristics in behavior of the passive population) in the marginal (extreme) state. 

With random values generator we modeled 2000 values of every one of the three parameters, 

and then computed 2000 related trajectories, approaching their extreme values. Random values 

were modeled using the Gaussian distribution with the zero expectations and standard deviation of 

20% of the basic level of the parameter. Figure 4 shows some of these 2000 selected trajectories of 

parameter y. One can see, that they run higher and lower, but very close to the basic trajectory. 

 

Figure 4 

 

Computation show that selected medium of the extreme values of all the eight parameters do 

not differ significantly from each other as well as from their basic “stationary” value. The variety 

coefficients are in Table 1. 

Table 1. Variety coefficients, % 

  A B С D 

e1 1 0,607 0,341 1,3 

e2 0.284 0.156 0.096 0.322 

x 4.6 2.4 1.3 5.2 

 ψ 12.3 6.6 2.9 13.7 

z 13.8 7.4 4.1 15.7 

xx 4.8 2.5 1.4 5.4 

zz 13.9 7.4 4.1 15.8 

y 3.5 1.9 1.0 4.0 

 

In the columns A, B, C and D we find variety coefficients of the model parameters A, H and 

k. Data in the Table 1 demonstrate that the values of “blue” numbers — z and zz — suffer the most 
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individual fluctuations. Fluctuations of parameter “outside influence” H (on the simulation compo-

nent ψ, the variation coefficient exceeding 13%) most influence these parameters.  

The less sensitive to the activities of e1 and e2 are the parameters of the aims; the correspond-

ing coefficients often do not exceed 1%. At last, the computations with the random sample of all 

three parameters increase the variations in the “stationary” state (column D), but the character of 

correlations between the dispersion of their parameters remains the same.  

The same analysis was carried of simultaneous variation of the parameters’ A, ξ1 and ξ2 ag-

gregate; a number of random variations here was the same — 2000. In this case we used the Gauss-

ian distribution and the homogeneous distribution with 20% interval from the basic. The mean sta-

tionary values of the variables for all 2000 realizations and variety coefficients are in Table 2. 

 

Table 2. Variables, mean and mistakes 

Variables  Gaussian distribution Homogeneous distribu-

tion 

 Variables Initial  Stationary Mean Variation 

coefficients 

Mean Variation 

coefficients 

e1 –11 4.231 4.231 0.011 4.23 0.009 

e2 10 4.595 4.595 0.027 4.596 0.022 

x 450 1524 1524 0.087 1520 0.072 

ψ –6 1.457 1.461 0.141 1.467 0.124 

xx 350 176.334 174.592 0.128 175.759 0.108 

z 75 185.213 185.248 0.088 184.757 0.073 

zz 100 109.403 108.331 0.129 109.054 0.108 

y 2125 1105 1108 0.125 1110  0.104 

 

Calculations show, that mistakes in the values of the given “trinity” of parameters in their 

homogenous distribution gave weak influence the prognostic values as compared to the Gaussian 

distribution. Not only parameters ψ, zz, but also xx and y turned more sensitive to mistakes. In-

creased sensitivity of y looks unexpected; but we can explain this phenomenon by the fact that sub-

stitutions of parameters H and k for ξ1 and ξ2 in our “trinity” demonstrated more significance of 

transition form “passive” for the values of “passive” per se. We limited our research to the behavior 

of a system of five parameters. It is clear that the number of parameters may be easily increased.  

 

CONCLUSIONS 

First we remind the author’s philosophical and methodological position. 
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1. Social processes are of regular type. We can treat this regularity as a tendency to a balanced 

state. The absence of any regularity — chaos — gives no opportunity for scientific description and 

prognosis. 

2. This regularity allows its mathematical interpretation, meaning the objective laws of soci-

um functioning behind. The main aim of our research was to computer analysis of mathematical 

model of a certain virtual reality, modeling the processes of ideological confrontations in a society. 

The basic scientific and sociological assumptions, to some extend obvious, of our research were the 

following. 

1. Individual behavior depends on his/her inner social and psychological aim. 

2. This aim is influenced by the contacts with the other individuals as well as from the mass-

media. 

3. The dominating aim in a society of a certain type or dominating number of individuals with 

a certain type of behavior attributes the strength of this influence. 

4. We may give prognosis of individual behavior and aims after learning the influence of the 

aims and the information. The application of our model is quite pragmatic — behavior prognosis 

and control. Therefore, the principle application of any model of this type is behavior prognosis 

and control. 

1. Our model demonstrate that group interactions in between and the society as an entity may 

be ideologically stable when the degree of aims’ variations and numerical proportions between dif-

ferent ideological groups are stable, despite the continuous intergroup activities and information 

influence. 

2. We can make prognosis of potentially stationary states (described by a number of members 

in social groups and their aims) using our model. 

3. Our model and the proposed method of its analysis allows analyzing the influence on dif-

ferent model parameters reflecting socium characteristics, or the abilities to control the processes in 

concern.  

4. Despite the virtual character of sociun in a model, its parameters may be attributed statisti-

cal values or expert weights, some of the parameters — easily and the others — with some difficul-

ties. 

5. Our model allows making simplifications, amendments, additions and modifications. In 

particular, some parameters may be taken as controlling; varying them, one may influence the mod-

eling behavior of the groups. These parameters may be H, E1, E2, B1, B2 etc. 

6. Onу may add the influence of outside environment, for example, level of well-being (or 

criminality) on parameter B1 (A2). We can introduce the adverse influence of maximalists’ number 



13 
 

 13 

on the processes or on the outside environment. As a result, the whole problem is in the basic data. 

Getting this data is a very special and complex problem. 

 

ATTACHMENT  

1. Value of the basic parameters 

A1=0,2; A2=0,16; A=0,0013; a=0,1062; B1=0,85; B2=3; E1=4; E2=5; α1=0,001; α2=0,001; 

β1=0,001; β2=0,0011; δ1=0,018; δ2=0,016; ρ=0,02; μ=0,01; σ=1,4; h=0,1; h1=0,01; γ1=0,02; 

γ2=0,03; k=2; φ1=0,01; φ2=0,001; ω=0,01; ξ1=0,03; ξ2=0,034, 

2. Parameters’ dynamics of the basic parameters 

 
Figure A1       Figure A2 

3. Parameters’ dynamics of modified Markov chain 

 
Figure A3       Figure A4 

4. Mean stationary values of  zz-parameter for 150h observations 

 
Figure A5 
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5. Histograms for variables x and e1 for 2000 observations with the homogenous mistakes’ 

distribution of the parameters 

 
Figure A6     Figure A7 

 
6. The graph of selected mean values and dispersions for parameter ψ concerning the amount 

of a sample  

 
Figure A8        Figure A9 

 
REFERENCES  

Baldassarri D., Bearman P.S. (2007). Dynamics of Political Polariza-

tion. American Sociological Review, 72 (5), 784—811.  

Cioffi-Revilla C. (2002). Invariance and Universality in Social Agent-Based Simulations. 

Proceedings of the National Academy of Sciences, 99, 7314—7316.  

Cioffi-Revilla C. (2005). A Canonical Theory of Origins and Development of Social Com-

plexity. Journal of Mathematical Sociology, 29, 133—153.  

Cioffi-Revilla C. (2010). A Methodology for Complex Social Simulations. Journal of Artifi-

cial Societies and Social Simulation, 13 (1).  

Davern M. (1997). Social Networks and Economic Sociology: A Proposed Research Agenda 

for a More Complete Social Science. American Journal of Economics & Sociology, 56, 3, 287—

302.     



15 
 

 15 

Gavrilets Ser., Anderson D.G., Turchin P. (2010). Cycling in the Complexity of Early So-

cieties. Cliodynamics,  1 (1). 

Gavrilets Yu.N. (1974).  Socio-Economic Planning. Systems and  Models. Moscow: 

Ekonomika (in Russian).    

Gavrilets Yu.N., Ofman Yu.P. (2012). Computer Modeling if Socio & Ethnic Structures 

Forming.  In: “Mathematical and Computer Modeling of Socio-Economic Processes”. Iss. 5. Mos-

cow: CEMI RAS (in Russian). 

Gubanov D.A., Novikov D.A., Chkhartishvilli A.G. (2010).  Social Networks: Modeling of 

Information Impact, control and Counteraction. Moscow: FizMatLit (in Russian). 

Helbing D. (1994). Mathematical Model for The Behavior of individuals in a Social Field. 

Journal Mathematical Sociology, 19 (3), 189—219. 

Makarov V.L. (2013). Social Modeling is Getting Pace. Economics and Mathematical Meth-

ods, 49, 4 (in Russian).  

Makarov V.L., Bakhtizin A.R. (2013). Supercomputer technologies in Social Sciences.  

Economics and Mathematical Methods, 49, 4 (in Russian).  

Moody J., Douglas R.W. (2003). Structural Cohesion and Embeddedness: A Hierar-

chical Concept of Social Groups. American Sociological Review, 68 (1). 

Opp K.-D. (2011). Modeling Micro-Macro Relationships: Problems and Solutions. Journal of 

Mathematical Sociology, 35. 

Rashevsky N. (1966). Two Models: Imitation Behavior and Status Distribution. // « Mathe-

matical Methods in the Contemporary Bourgeois Sociology. Moscow: Mir (in Russian).  

Semenchin Ye.A., Babchenko O.V. (2006). Markov Chains in Migration Processes Prognos-

tics. Contemporary Problems of Science and Education, 2 (in Russian).  

Staroverov O.V. (1997). The Basics of Mathematical Demography. Moscow: Nauka (in Rus-

sian).  

Wasserman S., Faust K. (1994). Social Network Analysis: Methods and Applications. N.Y.: 

Cambridge University Press. 

Weidlich W. (2002). Sociodynamics. London, Taylor & Francis.  

http://www.researchgate.net/journal/0022-250X_Journal_of_Mathematical_Sociology
http://www.researchgate.net/journal/0022-250X_Journal_of_Mathematical_Sociology

	Semenchin Ye.A., Babchenko O.V. (2006). Markov Chains in Migration Processes Prognostics. Contemporary Problems of Science and Education, 2 (in Russian).

